ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Milos I. Atz, Massimiliano Fratoni
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 795-813
Research Article | doi.org/10.1080/00295450.2023.2246736
Articles are hosted by Taylor and Francis Online.
Nuclear fuel cycle advancements will result in new types of fissile material, including nuclear wastes, that require security and safeguards. Nuclear wastes may be more vulnerable for diversion by non-state actors, and chemical processing to recover fissile material is not an insurmountable challenge. Previous work has applied a figure of merit (FOM) to assess material attractiveness and security risks. This analysis applies the material attractiveness FOM to wastes produced by fuel cycles from the Fuel Cycle Evaluation and Screening (FCES) study. Two aspects of security risk are studied: (1) the time before the fissile material in the waste becomes attractive and (2) the number of waste packages required to obtain a critical mass of fissile material. Two fuel cycles are presented to highlight detailed results: (1) once-through use of low-enriched U in light water reactors (LWRs) and (2) continuous recycle of Pu in sodium fast reactors (SFRs). Increasing LWR used nuclear fuel (UNF) package loading increases the time to attractiveness, but the larger packages contain enough Pu for multiple critical masses. The high-level waste (HLW) from processing the SFR fuels has similar FOM behavior but longer time to attractiveness due to the concentration of fission products. More HLW packages are required to obtain a critical mass; that number can be further increased by increasing the separation efficiency. Extended to all FCES fuel cycles, the minimum time before attractiveness is generally lower for UNF than for HLW because radioactivity is concentrated in HLW. For nearly all fuel cycles that produce UNF, only one package is required to recover enough fissile material for a critical mass. Notably, some advanced fuel cycles produce HLW, of which only two packages need to be recovered to obtain a critical mass, even when the target fissile material is recycled. Going forward, an assessment of the security risks posed by fissile material in nuclear wastes will need to quantify the challenge posed by separations. Ultimately, the assessment could inform security and response measures; whether any of the observations might affect these measures could be an area for future work. Finally, future analysis could study whether different fuel cycle wastes are more attractive for use in radiological dispersal devices or radiological exposure devices.