ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Edgar Hernández-Palafox, Pablo Ruiz-López, Luis Héctor Hernández Gómez, Alejandra Armenta-Molina, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernández, Luis Alberto Arenas-Magos
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 781-794
Research Article | doi.org/10.1080/00295450.2023.2244314
Articles are hosted by Taylor and Francis Online.
The evaluation of the structural integrity of a vertical cask that is used for spent nuclear fuel dry storage is reported. The cask diameter and height are 3.566 m (140 in.) and 5.28 m (207.75 in.), respectively. The analysis focuses on such a cask being impacted by a commercial airplane. The dry storage container standards, which are under evaluation and approval by the U.S. Nuclear Regulatory Commission, are considered. The storage container inner basket is made of a stainless steel plate cylinder. It is located within an outer shell. The last one is manufactured with concrete and has internal and external steel liners. The commercial airplane considered in this analysis has a length of 40.39 m (132 ft, 6 in.). Its wingspan and height are 35.23 m (115 ft, 7 in.) and 11.98 m (39 ft, 4 in.), respectively. Its take-off weight is 81 090 kg (178 773 lb).
An explicit analysis with the finite element method is carried out. The impact angles were 0, 30, 45, and 60 deg with respect to the horizontal. The mesh of the domain has 1 104 229 hexahedral elements and 1 516 156 nodes. Initially, all the structures are considered without restrictions and free of stresses. The vertical container for dry storage is at rest on a rigid concrete base. The aircraft velocity is 234 m/s or 842 km/h (523 mph). The impact event is simulated in an interval of 0.03 s. The maximum principal stress fields show that there are points at the lid of the container that are above the elastic limit and the ultimate strength. Under these conditions, brittle failure is expected.