ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Los Alamos researchers test TRISO transportation
Los Alamos National Laboratory recently performed a series of customized criticality experiments to obtain data that will support the transportation of HALEU TRISO fuel, the Department of Energy announced April 21.
Jung-Kun Lee, Sumin Bae, Sajib A. Dahr
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 772-780
Research Article | doi.org/10.1080/00295450.2023.2277027
Articles are hosted by Taylor and Francis Online.
Lead-cooled fast reactor (LFR) technology offers technical benefits such as high temperature operation, virtually no loss of coolant accidents, and operation at atmospheric pressure. Liquid lead is nonreactive with air and water, has a high boiling point, poor neutron absorption, and excellent heat transfer properties. Regardless of substantial advantages, the corrosive nature of liquid lead is a critical challenge in implementing LFR technology. This problem is especially pronounced at higher temperatures (>500°C). These issues have motivated research on materials and sensing capabilities in liquid lead. The University of Pittsburgh has developed a pool-type materials testing facility in international collaboration with universities, national labs, and industry. This new facility is a complement to existing loop-type facilities by being able to confirm corrosion testing results at high temperatures and higher coolant velocities, as well as by providing a large open volume of liquid lead to allow for the versatile testing of sensing instruments. In the design and manufacturing of the new facility, several important factors, such as temperature, oxygen concentration, and fluid velocity, were carefully considered. Successful running of the new testing facility will help industry demonstrate the reliability of structural materials and sensing instruments for LFRs.