ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Jung-Kun Lee, Sumin Bae, Sajib A. Dahr
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 772-780
Research Article | doi.org/10.1080/00295450.2023.2277027
Articles are hosted by Taylor and Francis Online.
Lead-cooled fast reactor (LFR) technology offers technical benefits such as high temperature operation, virtually no loss of coolant accidents, and operation at atmospheric pressure. Liquid lead is nonreactive with air and water, has a high boiling point, poor neutron absorption, and excellent heat transfer properties. Regardless of substantial advantages, the corrosive nature of liquid lead is a critical challenge in implementing LFR technology. This problem is especially pronounced at higher temperatures (>500°C). These issues have motivated research on materials and sensing capabilities in liquid lead. The University of Pittsburgh has developed a pool-type materials testing facility in international collaboration with universities, national labs, and industry. This new facility is a complement to existing loop-type facilities by being able to confirm corrosion testing results at high temperatures and higher coolant velocities, as well as by providing a large open volume of liquid lead to allow for the versatile testing of sensing instruments. In the design and manufacturing of the new facility, several important factors, such as temperature, oxygen concentration, and fluid velocity, were carefully considered. Successful running of the new testing facility will help industry demonstrate the reliability of structural materials and sensing instruments for LFRs.