ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Jung-Kun Lee, Sumin Bae, Sajib A. Dahr
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 772-780
Research Article | doi.org/10.1080/00295450.2023.2277027
Articles are hosted by Taylor and Francis Online.
Lead-cooled fast reactor (LFR) technology offers technical benefits such as high temperature operation, virtually no loss of coolant accidents, and operation at atmospheric pressure. Liquid lead is nonreactive with air and water, has a high boiling point, poor neutron absorption, and excellent heat transfer properties. Regardless of substantial advantages, the corrosive nature of liquid lead is a critical challenge in implementing LFR technology. This problem is especially pronounced at higher temperatures (>500°C). These issues have motivated research on materials and sensing capabilities in liquid lead. The University of Pittsburgh has developed a pool-type materials testing facility in international collaboration with universities, national labs, and industry. This new facility is a complement to existing loop-type facilities by being able to confirm corrosion testing results at high temperatures and higher coolant velocities, as well as by providing a large open volume of liquid lead to allow for the versatile testing of sensing instruments. In the design and manufacturing of the new facility, several important factors, such as temperature, oxygen concentration, and fluid velocity, were carefully considered. Successful running of the new testing facility will help industry demonstrate the reliability of structural materials and sensing instruments for LFRs.