ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NNSA to conduct NEPA review of plutonium pit production
The National Nuclear Security Administration announced that it will prepare a programmatic environmental impact statement (PEIS) to ensure National Environmental Policy Act compliance for the administration’s production of plutonium pits. The NNSA is inviting the public to participate in the PEIS process and to comment on the scope, environmental issues, and alternatives for consideration in drafting the document.
A. Meli, S. Bassini, C. Ciantelli, A. Fiore, M. Angiolini, M. Tarantino
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 758-771
Research Article | doi.org/10.1080/00295450.2023.2257547
Articles are hosted by Taylor and Francis Online.
The lead-cooled fast reactor (LFR) is one of the most promising Generation-IV nuclear designs currently under development in Europe, China, and the United States. LFRs can ensure enhanced performance and minimal waste production thanks to a closed fuel cycle, but they also have some issues that need to be addressed. One of the most critical is the long-term degradation process initiated in structural materials exposed to liquid Pb. The present state of the art has shown that commercial austenitic steels, such as American Iron and Steel Institute 316L and 15-15Ti can be adopted as structural materials in Pb environments up to 480°C, beyond which they start to experience the dissolution of constituting alloying elements (Ni, Cr, and Fe) if not protected by a coating or by surface modification.
In more recent years, a lot of research effort has been done in order to develop new coating technologies and new base materials for operation with liquid Pb at higher temperatures. Among the newest alloys, alumina-forming austenitic (AFA) steels have gained interest in the research community because of their promising corrosion resistance results even at temperatures of 600°C. In this framework, an experimental campaign has been run at the Research Center ENEA of Brasimone that aims to characterize the behavior of two different AFA steels (with low and high Ni content in their composition) in static Pb at 650°C and 750°C with a moderate low oxygen concentration (10−6 wt %). After exposure, the AFA steels were characterized from the point of view of the morphology and composition, and the results are presented and discussed here.