ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mariano Tarantino, Pierdomenico Lorusso, Alessio Pesetti, Ivan Di Piazza, Daniele Martelli
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 725-739
Research Article | doi.org/10.1080/00295450.2023.2226525
Articles are hosted by Taylor and Francis Online.
Since the 2000s, the development of Generation-IV fast reactors cooled by heavy liquid metals (HLMs) has been pursued by several research activities and projects, many of which are co-funded by the European Commission. One of the key points of HLMs regards their good neutronic and thermophysical properties, allowing for the of design cores with a high pitch-to-diameter ratio. In terms of passive safety, with a properly designed configuration, it is possible to increase the system capability to remove the decay power in a natural circulation regime, reducing active safety systems involvement. Such a safety-related aspect has been experimentally investigated at the ENEA Brasimone Research Center within the European Union co-funded Euratom H2020 SESAME project.
An experimental campaign reproducing protected loss-of-flow accident (PLOFA) scenarios has been executed on CIRCE, a lead-bismuth eutectic-cooled pool-type facility reproducing in relevant scale the main components of HLM-cooled fast reactors. A test section named HERO has been installed in the CIRCE main vessel, hosting a double-wall bayonet tube steam generator scaled 1:1 in length with respect to the one envisioned for the ALFRED reactor. The tests reproduce the loss of primary coolant flow, while the power supplied by the heating source decreases according to a characteristic decay heat curve. The feedwater in the secondary system is regulated to operate the main steam generator as a decay heat removal (DHR) system.
This paper presents the PLOFA transient reproducing the worst case, where the steam generator feedwater is suddenly stopped, simulating the full loss of the heat sink (no DHR). The main phenomena occurring during the transition from forced to natural circulation are presented and discussed. The experiment shows that, despite the loss of the forced circulation regime in the primary loop and the full loss of the heat sink, the entire system is still capable of operating safely, assuring an effective long-term cooling, as long as the thermal heat losses from the main vessel balance the decay power supplied by the heating source.