ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Cristiano Ciurluini, Vincenzo Narcisi, Ivan Di Piazza, Fabio Giannetti
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 713-724
Research Article | doi.org/10.1080/00295450.2023.2222248
Articles are hosted by Taylor and Francis Online.
A computational campaign was carried out at the Department of Astronautical, Electrical and Energy Engineering of Sapienza University of Rome aiming at the assessment of RELAP5-3D© capabilities for subchannel analysis. More specifically, the investigation involved a lead-bismuth-eutectic–cooled wire-spaced fuel pin bundle and compared simulation outcomes with experimental data coming from the NAtural CIrculation Experiment-Upgraded (NACIE-UP) facility, hosted at ENEA Brasimone Research Center. Thermal-hydraulic nodalization of the facility was developed with detailed subchannel modeling of the fuel pin simulator (FPS). Three different methodologies for the subchannel simulation were investigated, increasing step by step the complexity of the thermal-hydraulic model. In the simplest approach, the subchannels were modeled one by one. In addition, mass transfer between them was considered thanks to multiple cross junction components, realizing the hydraulic connection between adjacent subchannels. In this case, mass transfer depends on the pressure gradient and hydraulic resistance only, ignoring the turbulent mixing promoted by the wire-wrapped subassembly. Simulation results were not satisfactory, and an improvement was introduced in the second approach. In this case, several control variables calculate at each time step the energy transfer between adjacent control volumes associated with the turbulent mixing induced by the wires. This energy is transferred using ad hoc heat structures (HSs), where the boundary conditions are calculated by the control variables. The present model highlighted good capabilities in the prediction of the radial temperature distribution within the FPS, considerably reducing disagreement with experimental data. Finally, the influence of radial conduction within the fluid domain was assessed, introducing further HSs. Although this most complex model provided the best estimation of the experimental acquisition, the improvements given by radial conduction were not so relevant to justify the correspondent increase of the computational cost.