ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Pietro Stefanini, Francesco Galleni, Ivan Di Piazza, Andrea Pucciarelli
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 629-643
Research Article | doi.org/10.1080/00295450.2023.2189892
Articles are hosted by Taylor and Francis Online.
Liquid metal cooled reactors are among the design proposals accepted by the Generation IV International Forum for the fourth generation of nuclear power plants. During the last decade, many European Union (EU) projects started with the goal to pave the way for the development of this type of reactor. The present research work is performed in the framework of the EU Partitioning And Transmuter Research Initiative in a Collaborative Innovation Action (PATRICIA) project, supporting the development of the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Among the cornerstones of the project are experimental and numerical analyses involving the CIRColazione Eutettico (CIRCE) facility set at the ENEA Brasimone Research Centre. The upcoming experimental campaign will address the new CIRCE-THETIS configuration, including a new kind of heat exchanger named THETIS: a helical coil steam generator (SG) whose heat transfer capabilities and impact on pool thermal hydraulics are to be investigated. The main goal of the present work is to provide numerical support to experimentalists to help them set up the CIRCE-THETIS experimental facility, the operating conditions test matrix, and postulated transients, providing information about potential needed updates or dangerous conditions. This paper reports on pretest computational fluid dynamics and system thermal-hydraulic analyses performed at the University of Pisa in the frame of the PATRICIA project. The new SG was first addressed assessing its heat transfer capabilities. Sensitivity analyses were performed; among the outcomes, the excellent heat transfer capabilities of the SG were highlighted. The pool and the reactor vessel auxiliary cooling system component were later investigated reporting valuable information concerning both postulated steady-state and transient conditions. The performed analyses had a relevant impact on the design of the facility, suggesting updates based on numerical calculations. After the experimental campaign, posttest analyses will be performed to draw lessons from the observed phenomena. This will also provide room for improvement of the adopted numerical tools.