ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Project delivers a universal waste canister for advanced reactors
Nuclear waste disposal technology company Deep Isolation Nuclear has announced the completion of a three-year project to manufacture, physically test, and validate a disposal-ready universal canister system (UCS) for spent nuclear fuel and high-level radioactive waste from advanced reactors.
Federico Hattab, Fabio Giannetti, Vincenzo Narcisi, Pierdomenico Lorusso, Filippo Bussoletti, Michael Epstein, Sung Jin Lee, Mariano Tarantino
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 543-564
Research Article | doi.org/10.1080/00295450.2023.2173482
Articles are hosted by Taylor and Francis Online.
This paper presents an assessment aimed at evaluating primary heat exchanger (PHE) failure of the Westinghouse Electric Company Lead-cooled Fast Reactor (LFR) and at designing a facility for testing phenomena involved in such failure. The system thermal-hydraulic code RELAP5/MOD3.3 was used to develop a transient analysis simulation at reactor scale. Because of RELAP5/MOD3.3’s inability to mix working fluids, the steam injection effect was evaluated using the SIMMER-III code. The limits and strengths of both codes are highlighted throughout the paper. The reactor-scale steady-state results are in good agreement with the nominal operating condition. The transient results show that lead pool surface level variation and primary system pressurization during the PHE failure event are limited.
The PHE failure testing facility was characterized, and a preliminary layout was developed. A separate-effects transient inside the vessel was analyzed with SIMMER-III and RELAP5/MOD3.3 runs. The simulation outcomes have provided useful data to inform subsequent design stages for the test facility. Different configurations of the facility have been assessed, highlighting the strengths and weaknesses of each design. The most important issue was identified to be lead pool swelling, reaching the vessel’s lid and blocking the pressure relief vent. This poses a safety hazard that must be addressed and has been raised for resolution in subsequent design stages. The so-called V4 configuration is suggested as a starting point for further improvement of the facility. Furthermore, a smaller failure opening and lower lead level in the vessel are suggested.