ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Federico Hattab, Fabio Giannetti, Vincenzo Narcisi, Pierdomenico Lorusso, Filippo Bussoletti, Michael Epstein, Sung Jin Lee, Mariano Tarantino
Nuclear Technology | Volume 210 | Number 4 | April 2024 | Pages 543-564
Research Article | doi.org/10.1080/00295450.2023.2173482
Articles are hosted by Taylor and Francis Online.
This paper presents an assessment aimed at evaluating primary heat exchanger (PHE) failure of the Westinghouse Electric Company Lead-cooled Fast Reactor (LFR) and at designing a facility for testing phenomena involved in such failure. The system thermal-hydraulic code RELAP5/MOD3.3 was used to develop a transient analysis simulation at reactor scale. Because of RELAP5/MOD3.3’s inability to mix working fluids, the steam injection effect was evaluated using the SIMMER-III code. The limits and strengths of both codes are highlighted throughout the paper. The reactor-scale steady-state results are in good agreement with the nominal operating condition. The transient results show that lead pool surface level variation and primary system pressurization during the PHE failure event are limited.
The PHE failure testing facility was characterized, and a preliminary layout was developed. A separate-effects transient inside the vessel was analyzed with SIMMER-III and RELAP5/MOD3.3 runs. The simulation outcomes have provided useful data to inform subsequent design stages for the test facility. Different configurations of the facility have been assessed, highlighting the strengths and weaknesses of each design. The most important issue was identified to be lead pool swelling, reaching the vessel’s lid and blocking the pressure relief vent. This poses a safety hazard that must be addressed and has been raised for resolution in subsequent design stages. The so-called V4 configuration is suggested as a starting point for further improvement of the facility. Furthermore, a smaller failure opening and lower lead level in the vessel are suggested.