ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Vikram Rathore, Lorenzo Senis, Stefan Jarl Holm, Erik Andersson Sundén, Ane Håkansson, Mounia Laassiri, Peter Dendooven, Peter Andersson
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 532-541
Research Article | doi.org/10.1080/00295450.2023.2236882
Articles are hosted by Taylor and Francis Online.
Postirradiation examination of nuclear fuel is routinely performed to characterize the important properties of current and future fuel. Gamma emission tomography is a proven noninvasive technique for this purpose. Among various measurement elements of the technique, a gamma-ray detector is an important element whose spectroscopic abilities and detection efficiency affect the overall results. Finding a combination of high detection efficiency and excellent energy resolution in a single detector is often a challenge. We have designed a novel planar segmented high-purity germanium detector that offers simultaneous measurement in six lines of sight with excellent energy resolution. The simultaneous detection ability enables faster data acquisition in a tomographic measurement, which may facilitate achieving higher spatial resolution. In this work, we have demonstrated the first use of the detector by performing a full tomographic measurement of mockup fuel rods. Two methods of detector data analysis were used to make spectra, and the images (tomograms) were reconstructed using the filtered back projection algorithm. The reconstructed images validate the successful use of the detector for tomographic measurement. The use of the detector for real fuel measurement is being planned and will be performed in the near future.