ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
G. Singh, S. G. Mohod, P. V. S. Varma, P. Purohit, D. B. Sathe, R. B. Bhatt
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 486-500
Research Article | doi.org/10.1080/00295450.2023.2232224
Articles are hosted by Taylor and Francis Online.
Disc-shaped porous platinum sintered frits were fabricated employing a pore forming agent (PFA) via a powder-metallurgical process. Porous vent frits using several platinum-PFA compositions were prepared after characterizing the starting materials (platinum and PFA powders) for particle size (D50) and distribution (D10 to D90), morphology, Brunauer-Emmet-Teller surface area, density (apparent and tap), etc. The sintered platinum vent frits were extensively characterized to evaluate their suitability for application in terms of surface microstructure analysis by scanning electron microscopy, helium/air permeability parameters, and particulate filtration characteristics. This paper reports for the first time on the measurement of retention efficiency of vent frits for particulate sizes 0.3, 0.5, and 1 µm. The platinum frits made using 10 and 20 vol % PFA were found to be suitable as a vent hole filter for radioisotope power sources.