ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
G. Singh, S. G. Mohod, P. V. S. Varma, P. Purohit, D. B. Sathe, R. B. Bhatt
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 486-500
Research Article | doi.org/10.1080/00295450.2023.2232224
Articles are hosted by Taylor and Francis Online.
Disc-shaped porous platinum sintered frits were fabricated employing a pore forming agent (PFA) via a powder-metallurgical process. Porous vent frits using several platinum-PFA compositions were prepared after characterizing the starting materials (platinum and PFA powders) for particle size (D50) and distribution (D10 to D90), morphology, Brunauer-Emmet-Teller surface area, density (apparent and tap), etc. The sintered platinum vent frits were extensively characterized to evaluate their suitability for application in terms of surface microstructure analysis by scanning electron microscopy, helium/air permeability parameters, and particulate filtration characteristics. This paper reports for the first time on the measurement of retention efficiency of vent frits for particulate sizes 0.3, 0.5, and 1 µm. The platinum frits made using 10 and 20 vol % PFA were found to be suitable as a vent hole filter for radioisotope power sources.