ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Kyle Carberry, Bojan Petrovic
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 409-435
Research Article | doi.org/10.1080/00295450.2023.2229181
Articles are hosted by Taylor and Francis Online.
The research presented herein outlines a comprehensive process for characterizing the major radiological source terms necessary for radiation protection and licensing activities that one would expect in a liquid-fueled molten salt reactor. This process leverages organic simulation tools in the SCALE modeling and simulation code suite to provide an “off-the-shelf” solution for shielding assessments of this reactor type. Ultimately, this source development process is applied to a representative molten salt reactor system to assess the impact of ex-core source terms on shielding in varying operating conditions. The results of the analysis determined that while the prompt core source is the major dose contributor outside the radiological shielding, specific ex-core features, such as the primary salt loop components and configuration, can have an appreciable dose impact, and thus must be accounted for.