ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Kyle Carberry, Bojan Petrovic
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 409-435
Research Article | doi.org/10.1080/00295450.2023.2229181
Articles are hosted by Taylor and Francis Online.
The research presented herein outlines a comprehensive process for characterizing the major radiological source terms necessary for radiation protection and licensing activities that one would expect in a liquid-fueled molten salt reactor. This process leverages organic simulation tools in the SCALE modeling and simulation code suite to provide an “off-the-shelf” solution for shielding assessments of this reactor type. Ultimately, this source development process is applied to a representative molten salt reactor system to assess the impact of ex-core source terms on shielding in varying operating conditions. The results of the analysis determined that while the prompt core source is the major dose contributor outside the radiological shielding, specific ex-core features, such as the primary salt loop components and configuration, can have an appreciable dose impact, and thus must be accounted for.