ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Masrukan Masrukan, M. Husna Alhasa, Maman Kartaman, Juan Carlos Sihotang
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 379-390
Research Article | doi.org/10.1080/00295450.2023.2227814
Articles are hosted by Taylor and Francis Online.
The fuel element plates in a research reactor can be exposed to an acidic, neutral, or alkaline environment based on its surroundings. This study aimed to investigate the effect of Nb addition on the corrosion properties of U-6Zr alloys in various environments. U-6Zr-xNb alloys (U-6Zr-2Nb, U-6Zr-5Nb, and U-6Zr-8Nb) with different Nb compositions of 2, 5, and 8 wt%, respectively, were prepared and cut into smaller pieces. The pieces were then mounted with chemical resin equipped with copper wire cables and metallography prepared by grinding using sandpaper with grit sizes ranging from 320 to 1200. The electrochemical corrosion tests used in this work were the polarization test and Tafel extrapolation method.
In the first step of corrosion testing, the corrosion potential and polarization resistance were measured using standard settings from a voltage range of −0.02 to 0.02 V with a scanning rate of 0.05 mV/s. In the next step, a destructive method, called the Tafel extrapolation method, was used. Corrosion tests were carried out on U-6Zr-xNb alloys (x = 2, 5, 8) under various environmental conditions using electrochemical methods. Polarization resistance test and Tafel extrapolation methods revealed that the U-6Zr-2Nb alloy exhibited good corrosion resistance in an acidic HNO3 environment with a pH of 1.18. The best corrosion resistance of the U-6Zr-5Nb alloy was observed in demineralized water. Meanwhile, the U-6Zr-8Nb alloy showed the best corrosion resistance in an alkaline NaOH environment with a pH of 11.02. It can be concluded that the higher Nb composition added to U-6Zr alloys, the better their corrosion resistance in higher pH environments.