ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Masrukan Masrukan, M. Husna Alhasa, Maman Kartaman, Juan Carlos Sihotang
Nuclear Technology | Volume 210 | Number 3 | March 2024 | Pages 379-390
Research Article | doi.org/10.1080/00295450.2023.2227814
Articles are hosted by Taylor and Francis Online.
The fuel element plates in a research reactor can be exposed to an acidic, neutral, or alkaline environment based on its surroundings. This study aimed to investigate the effect of Nb addition on the corrosion properties of U-6Zr alloys in various environments. U-6Zr-xNb alloys (U-6Zr-2Nb, U-6Zr-5Nb, and U-6Zr-8Nb) with different Nb compositions of 2, 5, and 8 wt%, respectively, were prepared and cut into smaller pieces. The pieces were then mounted with chemical resin equipped with copper wire cables and metallography prepared by grinding using sandpaper with grit sizes ranging from 320 to 1200. The electrochemical corrosion tests used in this work were the polarization test and Tafel extrapolation method.
In the first step of corrosion testing, the corrosion potential and polarization resistance were measured using standard settings from a voltage range of −0.02 to 0.02 V with a scanning rate of 0.05 mV/s. In the next step, a destructive method, called the Tafel extrapolation method, was used. Corrosion tests were carried out on U-6Zr-xNb alloys (x = 2, 5, 8) under various environmental conditions using electrochemical methods. Polarization resistance test and Tafel extrapolation methods revealed that the U-6Zr-2Nb alloy exhibited good corrosion resistance in an acidic HNO3 environment with a pH of 1.18. The best corrosion resistance of the U-6Zr-5Nb alloy was observed in demineralized water. Meanwhile, the U-6Zr-8Nb alloy showed the best corrosion resistance in an alkaline NaOH environment with a pH of 11.02. It can be concluded that the higher Nb composition added to U-6Zr alloys, the better their corrosion resistance in higher pH environments.