ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
V. D’Ambrosi, J. Sercombe, S. Béjaoui, I. Zacharie-Aubrun, C. Introïni, J. Karlsson, D. Jädernäs, H.-U. Zwicky
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 285-307
Research Article | doi.org/10.1080/00295450.2023.2253660
Articles are hosted by Taylor and Francis Online.
This paper presents simulations of the xM3 power ramp with the fuel performance code ALCYONE performed during an international simulation exercise organized within the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Power to Melt and Maneuverability project. The xM3 test involved a large-grain UO2 fuel from Mitsubishi Heavy Industries cladded with Zirlo and pre-irradiated in a Spanish pressurized water reactor up to an average burnup of 27 GWd/tU−1. It was then submitted to a staircase ramp protocol in the R2 reactor at Studsvik (Sweden) with 10 successive steps of 5 kW·m−1 up to a ramp terminal level of 70 kW·m−1. The fuel rodlet did not fail, and detailed post irradiation examinations performed during the Studsvik Cladding Integrity Project II evidenced recrystallization of the pellet center around a central hole, interpreted as signs of fuel melting.
In this paper, simulations with ALCYONE of the xM3 power ramp, including an advanced model for fuel melting based on thermodynamic equilibrium calculations, are detailed. The model relies on the determination of the liquid fuel fraction evolution with temperature that is used to obtain a continuous description of the material properties during phase change. In consequence of the incorporation of rare earths and actinides in the bulk of the fuel, distinct solidus and liquidus temperatures are estimated. It is shown that the observed central hole and recrystallized central part of the pellet could be the consequence of totally melted fuel (liquidus is reached), partially melted fuel (solidus is reached), or pore migration only.