ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
IAEA: Chernobyl drone strike latest threat to nuclear safety in Ukraine
Social media this past weekend streamed with reactionary posts following a drone strike last Friday at the site of the destroyed reactor from the 1986 Chernobyl accident. The drone—armed with a warhead—ripped a hole in the New Safe Confinement (NSC), a large structure built to prevent any radioactive release from the damaged reactor unit 4 and to protect it from any external hazard. The drone strike caused a fire that was still smoldering in places as of Monday morning, and left a hole larger than 500 square feet. Efforts continue to mitigate the consequences of the fire and extinguish isolated smouldering areas of the NSC's insulation material.
Due to damage to the external and internal cladding of the NSC's arch and main crane system equipment, the safety boundaries and operational conditions of the NSC complex have been compromised, according to the Chernobyl nuclear power plant Facebook page.
Afiqa Mohamad, Yutaka Udagawa
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 245-260
Research Article | doi.org/10.1080/00295450.2023.2185061
Articles are hosted by Taylor and Francis Online.
In the Power to Melt and Maneuverability (P2M) project, a simulation exercise on two past power ramp experiments, xM3 on a medium-burnup rod and HBC4 on a high-burnup rod, was performed with the fuel performance code FEMAXI-8 to investigate fuel behavior under high-power and high-temperature conditions toward centerline fuel melting. In order to treat fuel melting, empirical melting temperature models have been incorporated into the FEMAXI-8 code. The present analysis gives reasonable predictions not only on cladding deformation but also on the fuel melting behavior of the HBC4 rod in which the UO2 liquidus temperature was reached during the transient. On the other hand, model improvement appears to be needed for a more accurate treatment of the fuel melting behavior of the xM3 rod in which the fuel center temperature reached the solidus line, whereas it may have not reached the liquidus line. A reasonable agreement of estimated fission gas release (FGR) with the measurement suggested that the high-temperature FGR at the given conditions is essentially a temperature-dependent phenomenon rate limited primarily by thermally activated elementary processes, such as fission gas diffusion.