ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
A. Chaieb, R. Largenton, A. Ambard, B. Baurens, M. Ton That
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 232-244
Research Article | doi.org/10.1080/00295450.2023.2232664
Articles are hosted by Taylor and Francis Online.
CYRANO3 is the thermal-mechanical industrial code developed and used by Electricité de France (EDF) to simulate nuclear fuel rod performance under normal and transient conditions (power ramp tests) in pressurized water reactors and during transport and storage periods, as well. This code has already been successfully used by EDF for the last 30 years to justify normal operations and category 2 transients, covering various types of fuels: UO2, UO2 + gadolinium, mixed oxide, and various claddings, as well those proposed by nuclear fuel suppliers: Zircaloy-4, Zirlo,™ and Optimized Zirlo.™
The CYRANO3 code was recently improved to allow for modeling fuel melting. In this paper, a global overview of CYRANO3’s ability to simulate past power-to-melt (P2M) ramps is presented with a focus on recent developments carried out to assess fuel rod behavior under these conditions. CYRANO3 is demonstrated to be a powerful tool to provide reliable values of melted radii.
As part of validation of these development works, CYRANO3 calculations have been used to assess two P2M ramp experiments carried out in the BR2 experimental core in Belgium (HBC-4 P2M ramp), and in the R2 experimental core in Sweden (xM3 P2M ramp). The main objectives of the work are to expand knowledge of the thermal-mechanical behavior of high-burnup fuel under P2M ramps by making interpretations of test simulations and to validate newly developed computational models for fuel melting that have been implemented in an extended version of the CYRANO3 fuel code.
For both rods, the steady-state irradiation power history was captured and modeling was performed. The key results of the steady-state irradiation modeling are reproduced with fair accuracy by means of CYRANO3 simulations. The results demonstrate the good ability of CYRANO3 to simulate P2M ramps. The melted radii and conditions of failure are well predicted. Calculated melted radius at ramp terminal Linear Heat Generation Rate (LHGR) is in good agreement with the experimental measurements performed after the experiments.