ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
G. Bonny, P. Blanpain, D. Rozzia, S. Billiet, M. Verwerft, B. Boer
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 216-231
Research Article | doi.org/10.1080/00295450.2023.2264505
Articles are hosted by Taylor and Francis Online.
In this work, a detailed reevaluation of a past power-to-melt experiment performed within the so-called High Burnup Chemistry project is provided. A pressurized water reactor–type UO2 fuel rod was base irradiated in Belgian Reactor 3 up to a peak pellet burnup of 60 MWd/kgU. After base irradiation, the rod experienced a power ramp experiment in Belgian Reactor 2, reaching a ramp terminal level of 70 kW/m (later adjusted to 66 kW/m). Extensive post-irradiation examination was performed after both the base irradiation and the power ramp experiment. After the power ramp experiment, rod cladding failure and local fuel melting were observed. Fuel melting was observed in an 85-mm region around the peak power pellet with a normalized molten fuel radius in the range r/r0 = 0.20 to 0.27. The threshold power for melting derived from this experiment was 63.0 ± 4.4 kW/m.