ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Los Alamos researchers test TRISO transportation
Los Alamos National Laboratory recently performed a series of customized criticality experiments to obtain data that will support the transportation of HALEU TRISO fuel, the Department of Energy announced April 21.
V. D’Ambrosi, J. Sercombe, S. Bejaoui, A. Chaieb, B. Baurens, R. Largenton, A. Ambard, B. Boer, G. Bonny, M. Ševeček, L. E. Herranz, F. Feria Marquez, K. Inagaki, H. Ohta, F. Boldt, J. Sappl, R. Armstrong, A. Mohamad, Y. Udagawa, C. Cozzo, J. Klouzal, M. Vitezslav, J. Corson, J. Peltonen
Nuclear Technology | Volume 210 | Number 2 | February 2024 | Pages 189-215
Research Article | doi.org/10.1080/00295450.2023.2194270
Articles are hosted by Taylor and Francis Online.
This paper presents the results of the Power To Melt and Maneuverability (P2M) Simulation Exercise on past fuel melting irradiation experiments, organized within the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Framework for IrraDiation ExperimentS (FIDES) framework by the Core Group (CEA, EDF, and SCK‧CEN) and open to all FIDES members. The exercise consisted in simulating two past power ramps where fuel melting was detected: (1) the xM3 staircase power transient [ramp terminal level (RTL) 70 kW‧m−1, average burnup 27 GWd‧tU−1], carried out in 2005 in the R2 reactor at Studsvik (Sweden), where the rodlet maintained its integrity, and (2) the HBC4 fast power transient (RTL 66 kW‧m−1, average burnup 48 GWd‧tU−1), carried out in 1987 in the BR2 reactor at SCK‧CEN (Belgium), where the cladding failed during the experiment. The exercise was joined by 13 organizations from 9 countries using 11 different fuel performance codes. In this paper, the main results of the Simulation Exercise are presented and compared to available postirradiation examinations (PIE) or on-line measurements during the power ramps (fuel and clad diameters, rod elongation, pellet-clad gap, and fission gas release). Since the focus of the Simulation Exercise is on fuel melting assessment, determination of the boundary between melted/nonmelted fuel and the consequent definition of a melting radius from PIE are first discussed. During the HBC4 ramp, fuel melting was predicted by most of the codes despite differences in the melting models. Higher discrepancies were observed for the xM3 rod that can be attributed partly to power uncertainty and partly to the limited capability of the models to describe partial melting of the fuel during this ramp. Finally, possible code developments to improve simulation results are presented.