ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Yoshiharu Sakamura
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 147-164
Research Article | doi.org/10.1080/00295450.2023.2216974
Articles are hosted by Taylor and Francis Online.
The electrorefining of spent metallic fuels is conducted in LiCl–KCl eutectic–based salt to recycle U, Pu, and minor actinides when chemically active fission products of rare earth, alkali, and alkaline-earth metals accumulate in the salt. For removing the fission products from the salt, a batchwise multistage countercurrent extraction technique using a liquid Cd solvent and a Li reductant was investigated and found to achieve both a high recovery ratio of actinides and a sufficient degree of separation from rare earths.
Vessels containing salt were prepared in accordance with the number of stages, and a smaller vessel containing liquid Cd was immersed in them sequentially to extract actinides from the salt. This operation is simple and reliable. The results calculated using the equilibrium separation factors reported in the literature suggested that four-stage extraction offers satisfactory performance for the separation of actinides from rare earths: more than 80% of Nd remained in the salt when 99.9% of Pu was recovered.
Moreover, demonstration tests were conducted using Nd and Dy as surrogates of actinides and rare earths, respectively. The separation factor between Dy and Nd was determined to be 21, which was approximately equal to that between Nd and Pu reported in the literature. It was shown that the experimental results of extracting Nd while leaving Dy in the salt were in good agreement with the calculated results. In conclusion, batchwise multistage countercurrent extraction was proved to be a promising actinide separation method.