ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
P. D. Vaswani, P. K. Tamboli, Debraj Chakraborty
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 126-136
Research Article | doi.org/10.1080/00295450.2023.2214662
Articles are hosted by Taylor and Francis Online.
This paper considers an optimized full state feedback (FSF) optimal controller for bulk power control of a 700-MW(electric) pressurized heavy water reactor (PHWR) that minimizes the controller norm to reduce the effect of disturbances. Lyapunov’s linear matrix inequalities (LMIs) have been considered for stability of the model. For the closed loop, these inequalities, which become nonlinear in the unknowns, are converted to LMIs by a suitable variable substitution. The controller’s optimization is achieved by minimizing the upper bound of the state feedback vector’s norm. As a result of this optimization, the controller gain is reduced, which reduces the effect of the disturbance input to the system. We study the stability of the closed loop system and the nonlinear transient performance using the state feedback. We demonstrate that the proposed controller’s transient performance is superior to that of a nonoptimized controller when compared to a conventional proportional-derivative controller. The designed controller has a norm that is about five orders lower than that obtained without optimization while still providing acceptable transient performance.