ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
Pedro Mena, R. A. Borrelli, Leslie Kerby
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 112-125
Research Article | doi.org/10.1080/00295450.2023.2214257
Articles are hosted by Taylor and Francis Online.
Concerns over cybersecurity in critical systems have grown significantly over the last decade. The increase in the successful attacks against infrastructure, major corporations, and governments has led to major investment in mitigating and preventing cyberattacks. At the same time, there has been a significant interest in utilizing data in operations, with machine learning applications becoming a popular area of study. One industry exploring machine learning applications is the nuclear industry. Because of the sensitive nature of nuclear systems, the question if attacks on nuclear data can be detected has begun to take urgency. This study explores the use of autoencoders to detect anomalies in nuclear data that could be potentially used to evaluate the operating status of a nuclear system. Data from a generic pressurized water reactor simulator used in a previous study to diagnose transients was used to train an autoencoder model using Keras. A separate portion of these data was altered by adding statistical noise for validation. Four different levels of noise were used in this experiment. Once the autoencoder was trained, a threshold was calculated using the average mean square error of the predictions and the standard deviation from that loss. Points above the threshold were classified as anomalies while points below were considered unaltered. For the initial level of noise, the model was able to score near perfect in recall, capturing all but 13 of the 13 884 altered points. However, in terms of precision, the model misclassified a number of unaltered points as altered, resulting in a score of 73.76%. To test the sensitivity of the model, the amount of noise was reduced three times, and as expected, the performance of the model worsened with each reduction. Still, the high performance in identifying altered points for higher levels of noise is an encouraging first step in developing anomaly detection systems for nuclear data.