ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Siyao Gu, Miltiadis Alamaniotis
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 100-111
Research Article | doi.org/10.1080/00295450.2023.2226914
Articles are hosted by Taylor and Francis Online.
Ever since the attack on the World Trade Center on September 11, prevention of nuclear terrorist attacks in urban environments has been a major focus for homeland security. To that end, mobile radiation sensor networks that are deployed within a specific area to acquire consecutive measurements are a first line of defense against the illicit movement of nuclear threats. However, sensor network deployment is a complex process imposed on physical and financial constraints and dynamically varying conditions. In this work, reinforcement learning (RL) is applied to control the sequential deployment of a mobile radiation sensor network within a specific geographic area. RL is utilized for dynamically learning of the environment and subsequent decision making on the optimal position of the network sensors driven by shared mutual information. RL has the benefit of allowing the network to learn and update a deployment strategy online from an initially unknown state.
The performance of the RL method is demonstrated through self-contained exploration and interaction between sensors in a source search scenario for detecting a radioactive source with a set of mobile detectors within the space of the University of Texas at San Antonio campus. Results exhibit the efficiency and efficacy of (a-sequential) RL in comparison to the sequential placement of the mobile sensors, showcasing optimality in accuracy and efficiency in source detection.