ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Siyao Gu, Miltiadis Alamaniotis
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 100-111
Research Article | doi.org/10.1080/00295450.2023.2226914
Articles are hosted by Taylor and Francis Online.
Ever since the attack on the World Trade Center on September 11, prevention of nuclear terrorist attacks in urban environments has been a major focus for homeland security. To that end, mobile radiation sensor networks that are deployed within a specific area to acquire consecutive measurements are a first line of defense against the illicit movement of nuclear threats. However, sensor network deployment is a complex process imposed on physical and financial constraints and dynamically varying conditions. In this work, reinforcement learning (RL) is applied to control the sequential deployment of a mobile radiation sensor network within a specific geographic area. RL is utilized for dynamically learning of the environment and subsequent decision making on the optimal position of the network sensors driven by shared mutual information. RL has the benefit of allowing the network to learn and update a deployment strategy online from an initially unknown state.
The performance of the RL method is demonstrated through self-contained exploration and interaction between sensors in a source search scenario for detecting a radioactive source with a set of mobile detectors within the space of the University of Texas at San Antonio campus. Results exhibit the efficiency and efficacy of (a-sequential) RL in comparison to the sequential placement of the mobile sensors, showcasing optimality in accuracy and efficiency in source detection.