ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
H. Ziani, T. El Bardouni, C. Elyounoussi, I. Berriban, T. El Ghalbzouri, B. El Bakkari, O. El Hajjaji, S. ElMaliki ElHlaibi, M. Lahdour, H. El Yaakoubi
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 72-83
Research Article | doi.org/10.1080/00295450.2023.2216452
Articles are hosted by Taylor and Francis Online.
This research analysis is mainly devoted to enhancing the safe and optimum use of the Center des Etudes Nucléaires de la Maâmora (CENM) TRIGA MARK II research reactor. To serve this purpose, various integral neutronic responses, such as the effective multiplication factor keff, the effective delayed neutron fraction βeff, the neutron flux distributions at the beam port entrances and the pneumatic transfer system bottom, the pin power peaking factors, the total excess reactivity, the control rod worth, the shutdown margin, and the worth of 11 fuel elements taken from different TRIGA core positions are calculated in order to evaluate the accuracy and the reliability of the developed TRIGA SCALE reactor model. The aim has been fulfilled by comparing the TRIGA SCALE results with those obtained by the MCNP TRIGA model, as well as with some recent experimental measurements from 2021. In general, all the obtained results reveal a good consistency between the SCALE and MCNP TRIGA models studied in this paper. The results analysis indicates also that the B-2 fuel element (Ring B) is the hottest rod among the 101 fuel rods existing in the TRIGA reactor core, which releases a maximum power of 31.67 kW. Furthermore, the total control rod worth, the total core excess reactivity, and the shutdown margin results are also closer to the experimental measurements.