ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
M. K. Bekmuldin, М. K. Skakov, V. V. Baklanov, А. V. Gradoboev, A. S. Akayev, K. O. Toleubekov
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 46-54
Research Article | doi.org/10.1080/00295450.2023.2226539
Articles are hosted by Taylor and Francis Online.
During the development of a severe accident at a nuclear power plant (NPP), corium is formed—a melt of core materials. A distinctive feature of corium, due to the content of fuel elements in its composition, is the presence of decay heat, which makes a significant contribution to the nature of the interaction of the corium melt with the structural materials of the reactor plant. In this regard, the decay heat should be taken into account when conducting computational studies and physical experiments. For this reason, certain requirements are imposed on the methods of simulating decay heat in the corium prototype, which relate to both the uniformity of the volume distribution and its intensity.
This paper presents the results of calibration experiments to substantiate the operability of the induction heating system of the Lava-B test bench, which is used to simulate decay heat in the study of processes occurring during an accident with the NPP core meltdown. So, in order to obtain optimal characteristics of the heating system, a series of experiments was conducted on heating the graphite block in the experimental section of the Lava-B test bench. In the experiments, the capacitance of the used oscillating circuit capacitor banks and the electrical power on the inductor varied. As a result of the analysis of the data obtained, the most optimal parameters of the inductor-load simulator system were determined. In general, the performed experiments confirmed the operability of the induction heater and the possibility of its use in experimental studies of the interaction of corium with the various structural elements of the NPP reactor core at the Lava-B test bench.