ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
M. K. Bekmuldin, М. K. Skakov, V. V. Baklanov, А. V. Gradoboev, A. S. Akayev, K. O. Toleubekov
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 46-54
Research Article | doi.org/10.1080/00295450.2023.2226539
Articles are hosted by Taylor and Francis Online.
During the development of a severe accident at a nuclear power plant (NPP), corium is formed—a melt of core materials. A distinctive feature of corium, due to the content of fuel elements in its composition, is the presence of decay heat, which makes a significant contribution to the nature of the interaction of the corium melt with the structural materials of the reactor plant. In this regard, the decay heat should be taken into account when conducting computational studies and physical experiments. For this reason, certain requirements are imposed on the methods of simulating decay heat in the corium prototype, which relate to both the uniformity of the volume distribution and its intensity.
This paper presents the results of calibration experiments to substantiate the operability of the induction heating system of the Lava-B test bench, which is used to simulate decay heat in the study of processes occurring during an accident with the NPP core meltdown. So, in order to obtain optimal characteristics of the heating system, a series of experiments was conducted on heating the graphite block in the experimental section of the Lava-B test bench. In the experiments, the capacitance of the used oscillating circuit capacitor banks and the electrical power on the inductor varied. As a result of the analysis of the data obtained, the most optimal parameters of the inductor-load simulator system were determined. In general, the performed experiments confirmed the operability of the induction heater and the possibility of its use in experimental studies of the interaction of corium with the various structural elements of the NPP reactor core at the Lava-B test bench.