ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Project delivers a universal waste canister for advanced reactors
Nuclear waste disposal technology company Deep Isolation Nuclear has announced the completion of a three-year project to manufacture, physically test, and validate a disposal-ready universal canister system (UCS) for spent nuclear fuel and high-level radioactive waste from advanced reactors.
C. Colterjohn, S. Nagasaki, Y. Fujii
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 23-45
Research Article | doi.org/10.1080/00295450.2023.2217390
Articles are hosted by Taylor and Francis Online.
This paper performs a detailed analysis of the optimized Ontario power mix under impending load and emissions constraints with the consideration of small modular reactor (SMR) deployment. The target of minimizing the total cost of the 2055 power mix while retaining real-world energy requirements was achieved using a semidynamic, recursive linear optimization model with hourly time resolution for the accurate consideration of wind and photovoltaic variable renewable energy. Utilizing IBM’s ILOG CPLEX Optimization Studio’s Flow Control method, dynamic factors such as forecasted demand growth, increasing capacity installations, learning curve applications, and reactor refurbishment and decommissioning schedules were applied to the modeling scenarios. Optimized scenarios have demonstrated that SMR-based capacity should play a vital role in the provincial energy mix in order to minimize cost while meeting emissions reduction goals and responding to increasing demand. Simulations show ideal cost reductions when approximately one-third of generated energy is produced by SMRs in the future energy mix and that the absence of SMRs may lead to up to 29% higher spending. Additional cases have considered the benefits of early SMR investment and direct SMR-CANDU cost comparisons.