ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Eymon Lan, Shanbin Shi
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 2016-2029
Research Article | doi.org/10.1080/00295450.2022.2157661
Articles are hosted by Taylor and Francis Online.
For National Aeronautics and Space Administration’s space mission planning, tons of cryogenic propellants need to be stored under microgravity conditions. Because of heat leaks into cryogenic propellant tanks, thermal stratification develops from lack of natural convection leading to boil-off of precious propellants. A thermodynamic vent system operates with a jet mixer to reduce thermal gradients within the fluid and control pressure inside the tank. In this work, a Reynolds-averaged Navier-Stokes–based computational fluid dynamics model was developed to study the fluid dynamics of jet-induced mixing and jet impingement on the large ullage bubble in the Tank Pressure Control Experiment (TPCE) under microgravity conditions. First, the computational model was benchmarked against existing experimental flow visualization data on the jet impingement. The jet mixing was then compared quantitatively with correlations for the jet radius to analyze the volumetric flow rate of the jet due to entrainment in the near field of the nozzle. The findings show that the confinement of the jet due to the ullage and the walls contributes positively to the jet entrainment rate, thus increasing the jet volumetric flow rate. In addition, the turbulence parameters are plotted to study the flow development for the TPCE case where the jet does not penetrate the ullage. Last, the model was used to determine the jet Weber number for penetration on the ullage bubble by varying jet inlet velocities. Numerical results show that the jet can penetrate the ullage when the jet Weber number is greater than 1.3.