ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Taehwan Ahn, Julio Diaz, Robert Adams, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1898-1913
Research Article | doi.org/10.1080/00295450.2023.2197680
Articles are hosted by Taylor and Francis Online.
High-resolution two-phase flow data in the rod bundle are important in the development and validation of high-fidelity models for computational fluid dynamics and subchannel codes, in particular, those pertaining to light water reactor cooling systems. The Michigan Adiabatic Rod Bundle Flow Experiment (MARBLE) has been constructed as a modular assembly of an 8 × 8 lattice rod bundle to simulate scaled pressurized water reactor and boiling water reactor subchannel assemblies. To establish a high-spatial resolution database of the void fraction in the reactor fuel assembly geometries, tomographic measurements were performed with the High-Resolution Gamma-ray Tomography System, which was designed and built in house; the detector system has a spatial resolution of less than 1.0 mm using 240 LYSO (Lu1.8Y0.2SiO5) scintillators with a fan-beam array. In the present study, the local void fraction was measured with the MARBLE facility under various air-water flow conditions (jg = 0.04 to 0.85 m/s and jl = 0.12 to 0.77 m/s) covering from bubbly to cap-turbulent flows. The local void fraction was also successfully measured under nonuniform and asymmetric air bubble distribution conditions with an investigation of the effect of spacer grids and mixing vanes on void drift across subchannels.