ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Yuki Mizushima
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1886-1897
Research Article | doi.org/10.1080/00295450.2023.2229998
Articles are hosted by Taylor and Francis Online.
A new ray-tracing–based calibration method for an Optical fiber–based Reflective Probe (ORP) was developed. This technique enables thickness measurement in micrometers in wavy thin liquid film flow, which is simpler and quicker than other liquid film measurements. First, the relationship between the film thickness and ORP signal was calculated through the ray-tracing simulator. The signal trend showed a steep rate of change within a few-hundred-micron thicknesses, thanks to the emission nature of the step index multimode fiber. The ray-tracing–based calibration was established using the calculated relationship. Second, the calibration method was validated under quiescent conditions. The calibrated ORP measured the thickness and then was compared to visualization. Good agreement was confirmed between the two results at a maximum difference of 20% under 1000 μm in thickness. Finally, thickness measurement for the wavy thin film flow was performed. Airflow (jG = 40 to 75 m/s) was introduced into the rectangle test section, and a small amount of tap water (Q = 30 to 90 mL/min) was injected into the channel plate. The difference in the measured thickness between ORP and high-speed visualization was around 20%. The effectiveness of the new calibration method and ORP measurement including its uncertainty will be discussed.