ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Mamoru Ishii, Yang Zhao, Guanyi Wang, Zhuoran Dang
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1867-1885
Review Article | doi.org/10.1080/00295450.2022.2163801
Articles are hosted by Taylor and Francis Online.
To fully realize the advantages of the two-fluid model, accurate prediction of the interfacial area concentration (IAC) is indispensable. Since conventional flow regime–based IAC correlations are not capable of dynamically describing the evolution of interfacial structure, the interfacial area transport equation (IATE) was developed to close the two-fluid model. In the past 30 years, intensive efforts have been made to improve the prediction performance of IATE and extend the experimental database for the IATE benchmark. Recent efforts of the IATE development and benchmark conducted by the Thermal-hydraulics and Reactor Safety Laboratory at Purdue University are reviewed in this paper. This review covers (1) the development of IATE; (2) the experimental database for IATE modeling, including instrumentation development, local measurement data of adiabatic/diabatic two-phase flow, and annular flow characterization; and (3) implementation and evaluation of IATE in one-dimensional/three-dimensional scenarios. Significant progress has been achieved since 2009, and future works required to advance the modeling of IATE are also suggested.