ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Rei Kimura, Yuki Nakai, Tadafumi Sano, Atsushi Sakon, Satoshi Wada
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1859-1866
Note | doi.org/10.1080/00295450.2023.2212828
Articles are hosted by Taylor and Francis Online.
An experiment was conducted that demonstrates a novel core power distribution reconstruction method based on ex-core detectors using time-dependent measurement at the University Teaching and Research Reactor of Kindai University (UTR-KINKI). Although the proposed method PHOEBE was able to identify the power distribution change caused by control rods under static conditions in a previous experiment, time-dependent experiments were not conducted. Hence, the present study measured time-dependent neutron counts using ex-core detectors to reconstruct the power distribution based on PHOEBE. Extraction of the control rods was expected to cause a shift in the reactor power distribution from the north side to the south, and the results of the power distribution reconstruction also demonstrated this power shift. This result experimentally and qualitatively demonstrated the detection of time-dependent power shifts based on PHOEBE. However, quantitative verification was difficult in this study because there are no verified time-dependent three-dimensional neutronics codes available. This issue will be addressed in a future study when a code becomes available.