ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Rei Kimura, Yuki Nakai, Tadafumi Sano, Atsushi Sakon, Satoshi Wada
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1859-1866
Note | doi.org/10.1080/00295450.2023.2212828
Articles are hosted by Taylor and Francis Online.
An experiment was conducted that demonstrates a novel core power distribution reconstruction method based on ex-core detectors using time-dependent measurement at the University Teaching and Research Reactor of Kindai University (UTR-KINKI). Although the proposed method PHOEBE was able to identify the power distribution change caused by control rods under static conditions in a previous experiment, time-dependent experiments were not conducted. Hence, the present study measured time-dependent neutron counts using ex-core detectors to reconstruct the power distribution based on PHOEBE. Extraction of the control rods was expected to cause a shift in the reactor power distribution from the north side to the south, and the results of the power distribution reconstruction also demonstrated this power shift. This result experimentally and qualitatively demonstrated the detection of time-dependent power shifts based on PHOEBE. However, quantitative verification was difficult in this study because there are no verified time-dependent three-dimensional neutronics codes available. This issue will be addressed in a future study when a code becomes available.