ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Brock Jolicoeur, Norbert Hugger, David Medich
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1819-1825
Regular Research Article | doi.org/10.1080/00295450.2023.2204988
Articles are hosted by Taylor and Francis Online.
We investigate the image quality and beam intensity of thermal neutron radiography after replacing a standard single-channel neutron collimator with a compact array of microcollimators. In this study, the MCNP6 Monte Carlo computer code was used to simulate a 2 × 2-cm-area isotropic thermal neutron source, which then was collimated by an array of micron-sized neutron collimators that measured 29.8 μm in diameter and with lengths that varied from 0.6 to 3 mm. These microcollimators were spaced 30 μm apart and assembled into a 2 × 2-cm array.
The image quality of the neutron beams produced by the resulting collimator arrays was assessed by imaging the edge of a very thin (~0.01-mm) gadolinium foil to obtain the image Modulation Transfer Function (MTF). The MCNP6 resulting flux map from each simulation then was converted into a grayscale .tiff image and the image’s resulting MTF obtained using the ImageJ computer program with the imaging beam geometric unsharpness, which is a limiting factor in the image resolution determined at the 10% value of the MTF curve.
In this study, we found that a 2 × 2× 0.298-cm microcollimator, corresponding to a length-to–hole diameter ratio of 100:1 and a collimator length of 2.98 mm produced a beam with a geometric unsharpness of 32 μm. Compared to a standard single-channel collimator with a 2 × 2-cm aperture, the single-channel collimator would need to be 660 cm long to produce an equivalent geometric sharpness. Yet because of its shorter length, the imaging beam intensity from our 2.98-mm-thick collimator array was approximately 50 times greater than that of an equivalent single-channel collimator.