ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Junhyuk Jang, Minsoo Lee, Gha-Young Kim, Mihye Kong, Jin-Seop Kim
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1785-1796
Regular Research Article | doi.org/10.1080/00295450.2023.2213495
Articles are hosted by Taylor and Francis Online.
Corrosion modules simulating the engineered barrier system were designed in this study for long-term-corrosion (LTC) testing of canister materials under aerobic and anaerobic conditions. The LTC module for aerobic conditions was designed as a bath-type container with flowing underground water extracted from the Korea Underground Research Tunnel. Five types of metallic disks, that is, rolled Cu, Type 304 stainless steel (SS), Titanium Grade 2 (Ti-G2), cast iron (CI), and Cu coating, were embedded into bentonite and maintained at different temperatures. After 3 years of testing under aerobic conditions, the corrosion rates of CI and Cu were estimated to be 1.9 μm/year and 550 nm/year, respectively. The SS and Ti-G2 exhibited a better corrosion rate of 6 nm/year. The LTC module for anaerobic conditions was developed in a vessel-type cylindrical container to allow it to settle in the boreholes. Four coin-shaped disks of each metal were embedded in bentonite, which was subsequently stacked in the cylindrical vessel. The vessels were placed in boreholes at a depth of 300 m. The Cu corrosion rate after 6 months of LTC testing under anaerobic conditions was 280 nm/year. Longer LTC tests will provide a more exact corrosion rate.