ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Nancy Granda Duarte, Irina I. Popova, Erik B. Iverson, Franz X. Gallmeier, Paul P. H. Wilson
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1747-1764
Regular Research Article | doi.org/10.1080/00295450.2023.2205554
Articles are hosted by Taylor and Francis Online.
In accelerator-driven systems, charged particles and high-energy neutrons can contribute to the production of nuclides that can persist long after the system has been shut down. These nuclides release photons that contribute to the biological dose. It is essential to quantify the biological dose as a function of time after shutdown to ensure safe working conditions for laborers during maintenance procedures. The shutdown dose rate (SDR) can be calculated with the Rigorous Two-Step (R2S) method, which includes a neutron and photon transport coupled with an activation calculation. For accelerator-driven systems, calculating SDR presents challenges related to the neutron cross-sectional data available for high-energy neutrons. A tally was implemented to collect isotope production data directly in a Monte Carlo N-Particle (MCNP) calculation. The output of this RNUCS tally is then used directly in an activation calculation, bypassing the need to use cross-section data with the neutron flux to obtain the isotope production and destruction data. A mesh-based RNUCS-R2S workflow has been developed based on this tally to calculate SDR in accelerator-driven systems. This workflow operates directly on computer-aided design geometry and supports using a meshed photon source. This workflow has been verified against a cell-based RNUCS-R2S workflow. A test problem with the essential characteristics of an accelerator-driven system was created to use in this analysis. The SDR results are within 40% of the cell-based RNUCS-R2S results. The workflow was also validated with the spallation neutron source system. Most detectors’ SDR results are within 50%, with a few detectors having a significantly lower SDR result than the experimental value.