ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jonathan Scherr, Pavel Tsvetkov
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1733-1746
Regular Research Article | doi.org/10.1080/00295450.2023.2209229
Articles are hosted by Taylor and Francis Online.
Abilene Christian University (ACU) is developing a 1-MW(thermal) molten salt research reactor that will be built on the ACU campus. A conceptual reactor core model was developed to facilitate the safety analysis required for a construction permit. A series of scoping studies were performed seeking to define the reactor core design parameters subject to a variety of design requirements. A Pareto curve identifying the tradeoff between uranium and LiF-BeF2 was determined. Within this curve, at least 250 kg of uranium and 700 kg of LiF-BeF2 are needed, albeit for different reactor configurations and fuel salt compositions. The cylindrical reactor vessel associated with the best-performing fuel salt composition is ~130 cm in diameter, ~170 cm tall, and contains ~2.5 tons of graphite. The conversion ratio of the reactor is low and will require regular refueling. The shift in neutron spectrum observed with the changing fuel salt composition does not significantly impact reactivity loss with respect to burnup.