ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Ian Wall—ANS member since 1964
Ian Wall early in his career . . .
I graduated with a degree in mechanical engineering from Imperial College, London, in 1958. Nuclear power was viewed favorably at the time, so I took a 1-year course on the subject. I was then offered fellowships at Cambridge University and the Massachusetts Institute of Technology and thought the latter would be more interesting, so I moved to Cambridge, Mass., to study nuclear engineering. After completing my doctorate in 1964, I joined the American Nuclear Society and took a job with General Electric, then in San Jose, Calif.
In 1967, GE assigned me to explore the use of probability in reactor safety. At that time, the prevailing opinion was that the probability of a severe accident was infinitesimally small and the consequences would be catastrophic.
Abdalla Abou-Jaoude, Yasir Arafat, Chandrakanth Bolisetti, Botros Hanna, Joshua Belvedere, James Blocker, Brandon Cooper, Shanda Harmon, Dan McCarthy
Nuclear Technology | Volume 209 | Number 11 | November 2023 | Pages 1697-1732
Regular Research Article | doi.org/10.1080/00295450.2023.2206779
Articles are hosted by Taylor and Francis Online.
Microreactors present promising opportunities to open new nuclear energy markets. However, it is expected that the economic competitiveness of this new class of reactors will hinge on potential cost reductions via mass production. It is therefore critical to begin assessing important considerations for the factory production of microreactors. An overview of the important aspects of the general layout of a microreactor factory, along with best practices to be incorporated early in the design process, is provided in this study. Then, a detailed use case is considered and modeled using a dedicated tool that can map workflows and activities within a factory. The end product is a 242 000 sq. ft. factory model that can ramp up production from 10 to 100 units per year.
Based on the activities and workflows needed, cost estimates for equipment and staffing needs are generated. These are expected to be first-order estimates, but would still provide guidance on the level of investment needed to reach mass production levels of microreactors. Furthermore, the potential cost reductions from scaling production are quantified. It was found that for a 100-unit factory throughput, reductions above 70% per unit cost relative to a prototype demonstration, could be observed for tasks conducted within a factory. These estimates focus solely on component fabricated at a factory and do not account for fuel costs nor any site activities. Because the analysis is design specific, not all findings are expected to be applicable across different microreactors (notably larger varieties), but it still provides a foundation establishing the basis for the mass production of these reactors.