ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Carolina da Silva Bourdot Dutra, Elia Merzari, John Acierno, Adam Kraus, Annalisa Manera, Victor Petrov, Taehwan Ahn, Pei-Hsun Huang, Dillon Shaver
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1592-1616
Research Article | doi.org/10.1080/00295450.2023.2181040
Articles are hosted by Taylor and Francis Online.
Heat pipe microreactors are reactor designs that primarily use liquid-metal heat pipes to cool the core. The main interest in heat pipes is the fact that they can remove heat passively. This, along with the use of liquid metal, allows the reactor to operate at higher temperatures. Although the use of heat pipes in nuclear reactors is new, liquid-metal heat pipe technology is mature. Nevertheless, experimental data on heat pipes are scarce, and very little is known about their behavior during abnormal operations and close to their thermal limits. Therefore, new experiments and accurate heat pipe simulations are needed to develop reliable closure models. This work describes a joint experimental and numerical investigation into heat pipes that attempts an initial closure of this gap. The numerical and experimental efforts are currently proceeding in parallel, aimed at different aspects of heat pipes. The numerical part is focused on gaps in local closures, and the experiments capture the overall heat pipe behavior.