ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Jiaxin Mao, Victor Petrov, Annalisa Manera, Trevor K. Howard, Sacit M. Cetiner
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1565-1576
Research Article | doi.org/10.1080/00295450.2022.2133505
Articles are hosted by Taylor and Francis Online.
Measuring the flow rate in High-Temperature Gas-cooled Reactors is a challenge for traditional flowmeters due to the high flow rate (10 to 15 m/s at nominal operating conditions), high operating temperatures (>700°C), and high neutron flux and gamma fields in the reactor core. This paper discusses developing a novel flowmeter that can work under these extreme conditions. Oak Ridge National Laboratory first proposed using acoustics to measure the flow in the reactor, more specifically, using a Kelvin-Helmholtz resonator to correlate the gas flow rate with vibration frequency. With the primary goal of developing an acoustic measurement technique, we propose an acoustic corrugated pipe as a candidate for the development of a novel gas flowmeter. Experimental investigations on corrugated pipes have confirmed the dependence of the whistling frequency on the gas flow rate. Also, a tube-in-tube configuration is proposed for the flowmeter prototype, which can help mitigate resonance between the system and the flowmeter. Experimental investigation using the prototype has shown good independence from the piping system. Furthermore, Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations have been performed and validated with a satisfactory agreement, providing confidence that URANS models can adequately predict the characteristic curve (flow rate versus frequency) of the corrugated pipe and can therefore be used to optimize the flowmeter designs cost-effectively.