The extension of the operating domain of PreussenElektra’s Konvoi-type pressurized water reactors (PWRs) beyond the natural end of cycle is known as stretch-out operation. A range of possibilities exists to increase nuclear fuel utilization to continue operation after the boron concentration reaches its dilution limit. The most basic option is to continue operation with constant average moderator temperature, which results in a relatively fast decrease in reactor power. From a fuel utilization point of view, this is the least optimal procedure. In PreussenElektra’s PWR fleet, an enhanced operation mode is adopted, leading to a comparatively modest decrease in reactor power and very high utilization of nuclear fuel. Initially, the stretch-out mode provided an option to gain flexibility regarding outage planning. More recently, the stretch-out method has served as a practical approach to optimizing electricity generation costs during the last cycles before the final shutdown as stipulated by law, as operators can extend the cycle length in a range of 30 to 60 days after the natural end of cycle. This paper describes the licensing rationale, the feasibility of this type of operation, and the operating requirements and experience. The system parameters affected by stretch-out operation are discussed. Adjustments of set points of thermal-hydraulic variables in the primary and secondary systems are explained. Licensing requirements for safe reactor operation in stretch-out mode are reviewed. Furthermore, aspects of neutronic and thermal-hydraulic core surveillance are included. After more than 35 years and counting, the methods of increasing fuel utilization are not new, and an evaluation of experience and effectiveness is in order.