ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
New work for old FLiBe? DOE considers reuse of molten salt reactor coolant
FLiBe—a mixture of lithium fluoride and beryllium fluoride—is not an off-the-shelf commodity. The Department of Energy suspects that researchers and reactor developers may have a use for the 2,000 kilograms of fluoride-based salt that once ran through the secondary coolant loop of the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory.
J. B. Lee, B. U. Bae, Y. S. Park, J. Kim, S. Cho, N. H. Choi, K. H. Kang
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1537-1548
Research Article | doi.org/10.1080/00295450.2022.2149040
Articles are hosted by Taylor and Francis Online.
A test called B4.2 in the OECD-ATLAS2 project was performed to simulate loss of the residual heat removal system (RHRS) during mid-loop operation (MLO) using a thermal-hydraulic (T-H) integral-effect test facility: the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). The main purpose of this test was to investigate a T-H transient in the reactor coolant system (RCS) during loss of the RHRS and to evaluate the effectiveness of reflux condensation and the capability of a safety injection tank (SIT) on shutdown coolability. The initial and boundary conditions for the B4.2 test were appropriately determined according to a state of MLO corresponding to 65 h after reactor trip in the Advanced Power Reactor 1400 MW(electric) (APR1400). During the loss of RHRS accident transient simulation, major T-H parameters such as system pressures, temperatures, and collapsed water levels in the RCS were measured, and unique T-H phenomena such as reflux/cocurrent condensations, off-take, countercurrent flow, and countercurrent flow limitation were investigated. In this paper, the overall T-H behavior in the RCS during a simulated loss of the RHRS with SITs is highlighted to provide a better understanding of T-H phenomena regarding coolability with reflux condensation.