ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
J. B. Lee, B. U. Bae, Y. S. Park, J. Kim, S. Cho, N. H. Choi, K. H. Kang
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1537-1548
Research Article | doi.org/10.1080/00295450.2022.2149040
Articles are hosted by Taylor and Francis Online.
A test called B4.2 in the OECD-ATLAS2 project was performed to simulate loss of the residual heat removal system (RHRS) during mid-loop operation (MLO) using a thermal-hydraulic (T-H) integral-effect test facility: the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). The main purpose of this test was to investigate a T-H transient in the reactor coolant system (RCS) during loss of the RHRS and to evaluate the effectiveness of reflux condensation and the capability of a safety injection tank (SIT) on shutdown coolability. The initial and boundary conditions for the B4.2 test were appropriately determined according to a state of MLO corresponding to 65 h after reactor trip in the Advanced Power Reactor 1400 MW(electric) (APR1400). During the loss of RHRS accident transient simulation, major T-H parameters such as system pressures, temperatures, and collapsed water levels in the RCS were measured, and unique T-H phenomena such as reflux/cocurrent condensations, off-take, countercurrent flow, and countercurrent flow limitation were investigated. In this paper, the overall T-H behavior in the RCS during a simulated loss of the RHRS with SITs is highlighted to provide a better understanding of T-H phenomena regarding coolability with reflux condensation.