ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
John C. Petrykowski
Nuclear Technology | Volume 209 | Number 10 | October 2023 | Pages 1495-1507
Research Article | doi.org/10.1080/00295450.2023.2222249
Articles are hosted by Taylor and Francis Online.
In nuclear reactor accident safety studies, the radiological source term is a metric that quantifies the release of radiological material from the reactor to the environment. The present work evaluates heat transfer between high-temperature vapor bubbles and the surrounding coolant and the effect these interactions have on the source term for postulated core disruptive accident scenarios associated with an oxide-fueled, liquid metal–cooled fast reactor class. It is shown that aerosol particle size can influence heat transfer, and it is suggested that the extent of the influence depends on the fineness of the particles in the aerosol. The results are consistent with legacy experiments conducted in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory and offer a more comprehensive assessment of vapor condensation by treating the bubble constituents, in the context of radiation heat transfer, as participating media. The model, which couples classical scattering theory to the equation of radiative transfer and the energy equation, provides a means for estimating size-affected radiative cooling times. Solutions are obtained via the P-1 method of spherical harmonics with improved, higher-order boundary conditions. Outcomes include the development of an “extinction-time ratio” criterion for assessing whether ejection of aerosol from the bubble to the cover region is likely. Aerosol release from the coolant pool is evaluated using this criterion with the potential to extend this work to reactor-scale accidents. A baseline evaluation is provided that shows that omission of participatory effects could lead, in a relative sense, to cooling time offsets in excess of 14%. In addition to enhancing previous evaluations of FAST results, these modeling outcomes contribute to knowledge management efforts aimed at developing a more mechanistic assessment of the source term while suggesting potential enhancements to severe accident safety analysis through the use of more comprehensive radiative heat transfer models.