ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Guanghui Wang, Hui He, Yaorui Li, Meng Zhang, Yang Gao, Caishan Jiao
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1373-1381
Research Article | doi.org/10.1080/00295450.2023.2199905
Articles are hosted by Taylor and Francis Online.
The contaminated solvent from the Purex process is washed with alkaline detergents such as sodium carbonate, which generates a large amount of secondary wastes. Therefore, hydrazine carbonate as a salt-free reagent deserves to be studied in depth. In this study, the Ce(IV), U(VI), and Zr(IV) metal ions in organic phases containing dibutyl phosphate (HDBP) of 30% tributyl phosphate (TBP)–dodecane were washed with hydrazine carbonate. The effects of the oscillation time (1 to 15 min); temperature (25°C to 85°C); cumulative number of washes (one to four times); mass fraction of hydrazine carbonate (0.1% to 20%); volume ratio of the aqueous phase to the organic phase (0.2 to 5); HDBP concentration (0 to 0.4 M); HNO3 concentration (0.05 to 8 M); and concentration of Ce(IV), U(VI), and Zr(IV) metal ions on the removal percentages of Ce(IV), U(VI), and Zr(IV) metal ions in polluted solvents were studied. The results showed that when the organic phase containing 0.02 M HDBP was washed three times with 5% hydrazine carbonate at 25°C, the removal percentages of the Ce(IV), U(VI), and Zr(IV) ions were 96%, 98%, and 94%, respectively. Meanwhile, the retention concentrations of the three in the organic phase were 35, 28, and 78 mg/L, respectively. The increase of the mass fraction of hydrazine carbonate enhances the removal of the metal ions from the organic phase into the aqueous phase. High acid is not conducive to alkaline washing of metal ions. The increase of HDBP concentration not only promotes extraction but also increases the retention capacity of the organic phase and has the most significant effect on Zr(IV). U(VI) promotes the preferential washing of Zr(IV) while Ce(IV) increases the metal retention concentration of Zr(IV) in the organic phase.