ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Changan Ren, He Li, Jichong Lei, Jie Liu, Wei Li, Kekun Gao, Guocai Huang, Xiaohua Yang, Tao Yu
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1365-1372
Research Article | doi.org/10.1080/00295450.2023.2199098
Articles are hosted by Taylor and Francis Online.
With the advancement of artificial intelligence technology, intelligent diagnostic technology has been gradually implemented across various industries. This study proposes the use of convolutional neural networks–long short-term memory (CNNs-LSTM) for diagnosing faults in CPR1000 nuclear power plants (NPPs). To automatically extract data related to different types and levels of faults in the PCTRAN program, the study utilizes a self-developed AutoPCTRAN software and selects several key nuclear parameters as feature quantities. The study uses random sampling to create the training, validation, and test sets in an 8:1:1 ratio and identifies acceptable parameters to build the CNN-LSTM model. Test results show that the CNN-LSTM–based model for diagnosing CPR1000 NPP faults achieves a problem recognition rate of 99.6%, which validates the efficacy of the CNN-LSTM–based nuclear power fault diagnosis model.