ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Changan Ren, He Li, Jichong Lei, Jie Liu, Wei Li, Kekun Gao, Guocai Huang, Xiaohua Yang, Tao Yu
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1365-1372
Research Article | doi.org/10.1080/00295450.2023.2199098
Articles are hosted by Taylor and Francis Online.
With the advancement of artificial intelligence technology, intelligent diagnostic technology has been gradually implemented across various industries. This study proposes the use of convolutional neural networks–long short-term memory (CNNs-LSTM) for diagnosing faults in CPR1000 nuclear power plants (NPPs). To automatically extract data related to different types and levels of faults in the PCTRAN program, the study utilizes a self-developed AutoPCTRAN software and selects several key nuclear parameters as feature quantities. The study uses random sampling to create the training, validation, and test sets in an 8:1:1 ratio and identifies acceptable parameters to build the CNN-LSTM model. Test results show that the CNN-LSTM–based model for diagnosing CPR1000 NPP faults achieves a problem recognition rate of 99.6%, which validates the efficacy of the CNN-LSTM–based nuclear power fault diagnosis model.