ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Bert J. Debusschere, D. Thomas Seidl, Timothy M. Berg, Kyung Won Chang, Rosemary C. Leone, Laura P. Swiler, Paul E. Mariner
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1295-1318
Research Article | doi.org/10.1080/00295450.2023.2197666
Articles are hosted by Taylor and Francis Online.
Spent nuclear fuel repository simulations are currently not able to incorporate detailed fuel matrix degradation (FMD) process models due to their computational cost, especially when large numbers of waste packages breach. The current paper uses machine learning to develop artificial neural network and k-nearest neighbor regression surrogate models that approximate the detailed FMD process model while being computationally much faster to evaluate. Using fuel cask temperature, dose rate, and the environmental concentrations of CO32−, O2, Fe2+, and H2 as inputs, these surrogates show good agreement with the FMD process model predictions of the UO2 degradation rate for conditions within the range of the training data. A demonstration in a full-scale shale repository reference case simulation shows that the incorporation of the surrogate models captures local and temporal environmental effects on fuel degradation rates while retaining good computational efficiency.