ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Carlos X. Soto, Odera Dim, Yonggang Cui, Warren Stern
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1282-1294
Research Article | doi.org/10.1080/00295450.2023.2200573
Articles are hosted by Taylor and Francis Online.
Burnup measurement is an important step in material control and accountancy at nuclear reactors and may be done by examining gamma spectra of fuel samples. Traditional approaches rely on known correlations to specific photopeaks (e.g., Cs) and operate via a standard linear regression method. However, the quality of these regression methods is limited even in the best case and is significantly poorer at short fuel cooldown times, due to the elevated radiation background by short-lifetime isotopes and self-shielding effect of the fuel. For practical operation of pebble bed reactors (PBRs), quick measurements (in minutes) and short cooling times (in hours) are required from a safety and security perspective. We investigated the efficacy and performance of machine learning (ML) methods to predict the burnup of the pebble fuel from full gamma spectra (rather than specific discrete photopeaks) and found a full-spectrum ML approach to far outperform baseline regression predictions in all measurement and cooling conditions, including in operational-like measurement conditions. We also performed model and data ablation experiments to determine the relative performance impact of our ML methods’ capacity to model data nonlinearities and the inherent additional information in full spectra. Applying our ML methods, we found a number of surprising results, including improved accuracy at shorter fuel cooling times (the opposite of the norm), remarkable robustness to spectrum compression (via rebinning), and competitive burnup predictions even when using a background signal only (i.e., explicitly omitting known isotope photopeaks).