ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Carlos X. Soto, Odera Dim, Yonggang Cui, Warren Stern
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1282-1294
Research Article | doi.org/10.1080/00295450.2023.2200573
Articles are hosted by Taylor and Francis Online.
Burnup measurement is an important step in material control and accountancy at nuclear reactors and may be done by examining gamma spectra of fuel samples. Traditional approaches rely on known correlations to specific photopeaks (e.g., Cs) and operate via a standard linear regression method. However, the quality of these regression methods is limited even in the best case and is significantly poorer at short fuel cooldown times, due to the elevated radiation background by short-lifetime isotopes and self-shielding effect of the fuel. For practical operation of pebble bed reactors (PBRs), quick measurements (in minutes) and short cooling times (in hours) are required from a safety and security perspective. We investigated the efficacy and performance of machine learning (ML) methods to predict the burnup of the pebble fuel from full gamma spectra (rather than specific discrete photopeaks) and found a full-spectrum ML approach to far outperform baseline regression predictions in all measurement and cooling conditions, including in operational-like measurement conditions. We also performed model and data ablation experiments to determine the relative performance impact of our ML methods’ capacity to model data nonlinearities and the inherent additional information in full spectra. Applying our ML methods, we found a number of surprising results, including improved accuracy at shorter fuel cooling times (the opposite of the norm), remarkable robustness to spectrum compression (via rebinning), and competitive burnup predictions even when using a background signal only (i.e., explicitly omitting known isotope photopeaks).