ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Rofida Hamad Khlifa, Nicolay N. Nikitenkov
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1268-1281
Research Article | doi.org/10.1080/00295450.2023.2203282
Articles are hosted by Taylor and Francis Online.
To address concerns about the degradation of unprotected internal surfaces of nuclear fuel claddings, inner-side coatings have been proposed as a complementary approach to the accident tolerant fuel protective coating concept. In addition to the increased coping time during severe events, these coatings are expected to provide enhanced protection in normal operation conditions. This study analyzes the neutronic performance of chromium (Cr) inner-side coatings in VVER-type fuel assemblies. Different aspects, such as reactivity and cycle length penalties, enrichment requirements, neutron flux, and the associated isotopic concentration changes are discussed, considering both the coating thickness and position.
The results show that for the same thickness, reactivity penalties due to the use of inner-side Cr coatings will be (~30% on average) less compared to external coatings. The fuel assembly operating cycle showed reductions by ~ 5.5 effective full-power days when a 10-µm-thick internal Cr coating is introduced, while a 10-µm two-sided coated assembly possessed an ~13.6-day shorter operating cycle compared to an uncoated fuel assembly of the same specifications.
The neutron flux showed slight shifts and hardening in the thermal energy region. The analysis of nuclide inventories showed relative increases in these inventories, which were proportional to the thickness. For the fissile plutonium isotope 239Pu, this relative increase reached a peak of 0.25% and 0.42% (for the 10-µm and 20-µm internal Cr coatings) at a fuel burnup of 18 MWd/kg heavy metal (HM). While for 241Pu, the observed highest relative increases for the 10-µm- and 20-µm-thick internal Cr coatings were 0.74% and 1.03%, respectively. The 135Xe isotopic concentration showed a relative increase that reached 0.2% and 0.4% for the 10-µm and 20-µm internal Cr coatings at a burnup of 34 MWd/kgHM, while the 149Sm concentration increased by 0.2% and 0.5% for the 10-µm and 20-µm internal Cr coatings, respectively.
While these observed isotopic concentration changes were generally small for the studied inner-side coatings, the results showed that the changes remain subject to further increases as the amount of coating material gets higher. Therefore, it is important for the coating thickness to be optimized, taking into account the impact of such nuclide inventory changes. Possible fuel-clad gap reductions and the associated effects on heat transfer, as well as gap tolerance to fission products and fuel relocations, will require further studies, especially so that additional enrichments may be applied.