ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Canada lands on spent fuel repository site
While the United States was celebrating Thanksgiving Day, Canada’s Nuclear Waste Management Organization (NWMO) announced that it has selected a site in northwestern Ontario for a deep geologic repository to hold the country’s spent nuclear fuel
Fawaz Ali, Ghaouti Bentoumi, Liqian Li, Ronald B. Rogge
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1252-1267
Research Article | doi.org/10.1080/00295450.2023.2202793
Articles are hosted by Taylor and Francis Online.
The low rate at which some fissile isotopes, such as 235U, 233U, and 239Pu, undergo spontaneous fission leads to a weak signal, resulting in a high-uncertainty in applying passive neutron counting techniques. Stimulating fission through active neutron interrogation can overcome this issue. At Canadian Nuclear Laboratories, a 252Cf and a deuterium-deuterium neutron source are available. In this study, a neutron counting system was designed to perform passive measurements and active neutron interrogation for a search of special nuclear material. The detection system consists of a cylindrical cavity surrounded by a polyethylene moderator with 3He detectors interspersed throughout. When used for passive measurements, the sample is placed in the cylindrical cavity, whereas in active interrogation mode, the 252Cf neutron source and the sample are placed in close proximity to each other in the cylindrical cavity. Measurements that actively interrogated samples, notably containing (among other isotopes) either 235U or 239Pu whose mass was on the order of fractions of a gram, carried out using the 252Cf neutron source found that the average delayed neutron count rate was on the same order of magnitude as those obtained from passive measurements using several kilograms of natural uranium. The Monte Carlo N-Particle 6 version 2.0 radiation transport code was used to simulate the aforementioned active interrogations and to inform the experimental results. Results showed that, due to the close proximity of the polyethylene moderator to the 252Cf source, the neutron energy spectrum traversing the fissile sample has a significant thermal component that maximizes the fission reaction rate in the interrogated fissile samples, thereby allowing for successful measurements.