ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Fawaz Ali, Ghaouti Bentoumi, Liqian Li, Ronald B. Rogge
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1252-1267
Research Article | doi.org/10.1080/00295450.2023.2202793
Articles are hosted by Taylor and Francis Online.
The low rate at which some fissile isotopes, such as 235U, 233U, and 239Pu, undergo spontaneous fission leads to a weak signal, resulting in a high-uncertainty in applying passive neutron counting techniques. Stimulating fission through active neutron interrogation can overcome this issue. At Canadian Nuclear Laboratories, a 252Cf and a deuterium-deuterium neutron source are available. In this study, a neutron counting system was designed to perform passive measurements and active neutron interrogation for a search of special nuclear material. The detection system consists of a cylindrical cavity surrounded by a polyethylene moderator with 3He detectors interspersed throughout. When used for passive measurements, the sample is placed in the cylindrical cavity, whereas in active interrogation mode, the 252Cf neutron source and the sample are placed in close proximity to each other in the cylindrical cavity. Measurements that actively interrogated samples, notably containing (among other isotopes) either 235U or 239Pu whose mass was on the order of fractions of a gram, carried out using the 252Cf neutron source found that the average delayed neutron count rate was on the same order of magnitude as those obtained from passive measurements using several kilograms of natural uranium. The Monte Carlo N-Particle 6 version 2.0 radiation transport code was used to simulate the aforementioned active interrogations and to inform the experimental results. Results showed that, due to the close proximity of the polyethylene moderator to the 252Cf source, the neutron energy spectrum traversing the fissile sample has a significant thermal component that maximizes the fission reaction rate in the interrogated fissile samples, thereby allowing for successful measurements.