ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Fawaz Ali, Ghaouti Bentoumi, Liqian Li, Ronald B. Rogge
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1252-1267
Research Article | doi.org/10.1080/00295450.2023.2202793
Articles are hosted by Taylor and Francis Online.
The low rate at which some fissile isotopes, such as 235U, 233U, and 239Pu, undergo spontaneous fission leads to a weak signal, resulting in a high-uncertainty in applying passive neutron counting techniques. Stimulating fission through active neutron interrogation can overcome this issue. At Canadian Nuclear Laboratories, a 252Cf and a deuterium-deuterium neutron source are available. In this study, a neutron counting system was designed to perform passive measurements and active neutron interrogation for a search of special nuclear material. The detection system consists of a cylindrical cavity surrounded by a polyethylene moderator with 3He detectors interspersed throughout. When used for passive measurements, the sample is placed in the cylindrical cavity, whereas in active interrogation mode, the 252Cf neutron source and the sample are placed in close proximity to each other in the cylindrical cavity. Measurements that actively interrogated samples, notably containing (among other isotopes) either 235U or 239Pu whose mass was on the order of fractions of a gram, carried out using the 252Cf neutron source found that the average delayed neutron count rate was on the same order of magnitude as those obtained from passive measurements using several kilograms of natural uranium. The Monte Carlo N-Particle 6 version 2.0 radiation transport code was used to simulate the aforementioned active interrogations and to inform the experimental results. Results showed that, due to the close proximity of the polyethylene moderator to the 252Cf source, the neutron energy spectrum traversing the fissile sample has a significant thermal component that maximizes the fission reaction rate in the interrogated fissile samples, thereby allowing for successful measurements.